Pharmacologically regulated production of targeted retrovirus from T cells for systemic antitumor gene therapy.

نویسندگان

  • Marka Crittenden
  • Michael Gough
  • John Chester
  • Tim Kottke
  • Jill Thompson
  • Anja Ruchatz
  • Tim Clackson
  • Francois Luic Cosset
  • Heung Chong
  • Rosa Maria Diaz
  • Kevin Harrington
  • Luis Alvarez Vallina
  • Richard Vile
چکیده

We aimed to use cell-based carriers to direct vector production to target sites for systemic therapy. We used T cells engineered to express a chimeric T cell receptor that can specifically recognize target cells expressing the tumor-associated carcinoembryonic antigen (CEA). These T cells were modified to produce a retrovirus under tight pharmacological control using the rapamycin-inducible transcriptional regulatory system. The retroviral vectors produced were transcriptionally targeted to CEA-expressing target cells. We found that vector production and transgene expression from these T cells in vitro was dependent on pharmacological induction and expression of CEA in target cells, respectively. Mice bearing metastatic tumors that received cell carriers delivering the HSVtk gene demonstrated a significant increase in survival, but only in response to pharmacological induction of vector production. Interestingly, the therapeutic effect required the presence of the tumor-specific chimeric receptor on T cells. Further studies demonstrated that systemic delivery of tumor-specific T cells to mice bearing metastatic tumors caused recruitment of nonspecific T cells to the tumor site. We hypothesize that this enhanced targeting to tumor sites is responsible for the efficiency of T cell-mediated retroviral gene transfer and that this principle can be used to enhance systemic therapies using immune-cell carriers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors.

The systemic delivery of genetic therapies required for the treatment of inaccessible tumors and metastases remains a challenge despite the development of various viral and synthetic vector systems. Here we show that a synthetic vector system based on polypropylenimine dendrimers has the desired properties of a systemic delivery vehicle and mediates efficient transgene expression in tumors afte...

متن کامل

Systemic Targeted Alpha Radiotherapy for Cancer

Background: The fundamental principles of internal targeted alpha therapy for cancer were established many decades ago.The high linear energy transfer (LET) of alpha radiation to the targeted cancer cellscauses double strand breaks in DNA. At the same time, the short range radiation spares adjacent normal tissues. This targeted approach complements conventional external beam radiotherapy and ch...

متن کامل

Arteether Exerts Antitumor Activity and Reduces CD4+CD25+FOXP3+ T-reg Cells in Vivo

Background: Chemo-immunotherapy is one of the new achievements for treatment of cancer, by which the success of anti-cancer therapy can be increased. In vitro studies have been shown that Arteether (ARE) induces apoptosis in tumor cells, but not in normal cells. Objective: To investigate the cytotoxic and immunomodulatory properties of Arteether in-vivo and in-vitro. Methods: In this study, we ...

متن کامل

Secretable chaperone Grp170 enhances therapeutic activity of a novel tumor suppressor, mda-7/IL-24.

Melanoma differentiation-associated gene-7 (mda-7)/interleukin-24 (IL-24) is a cancer-specific, apoptosis-inducing gene with broad-spectrum antitumor activity, making it an ideal candidate for a novel cancer gene therapy. A systemic and sustained antitumor immune response generated at the time of initial molecular-targeted therapy would provide additional clinical benefits in cancer patients, r...

متن کامل

Retroviral Transduction of Fluonanobody and the Variable Domain of Camelid Heavy-Chain Antibodies to Chicken Embryonic Cells

Background: Single domain antibodies from camel heavy chain antibodies (VHH or nanobody), are advantages due to higher solubility, stability, high homology with human antibody, lower immunogenicity and low molecular weight. These criteria make them candidates for production of engineered antibody fragments particularly in transgenic animals. Objective: To study the development of transgenic ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 63 12  شماره 

صفحات  -

تاریخ انتشار 2003